tensorflow中指定GPU及GPU显存设置

机器学习

#1

查看机器上GPU情况

命令: nvidia-smi

功能:显示机器上gpu的情况

命令: nvidia-smi -l

功能:定时更新显示机器上gpu的情况

其中左上侧有0、1、2、3的编号,表示GPU的编号,在后面指定GPU时需要使用这个编号。

在终端执行程序时指定GPU

CUDA_VISIBLE_DEVICES=1 python your_file.py

这样在跑你的网络之前,告诉程序只能看到1号GPU,其他的GPU它不可见

可用的形式如下:

CUDA_VISIBLE_DEVICES=1 Only device 1 will be seen CUDA_VISIBLE_DEVICES=0,1 Devices 0 and 1 will be visible CUDA_VISIBLE_DEVICES=“0,1” Same as above, quotation marks are optional CUDA_VISIBLE_DEVICES=0,2,3 Devices 0, 2, 3 will be visible; device 1 is masked CUDA_VISIBLE_DEVICES="" No GPU will be visible

在Python代码中指定GPU

import os os.environ[“CUDA_VISIBLE_DEVICES”] = “0”

设置定量的GPU使用量

config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.9 # 占用GPU90%的显存 session = tf.Session(config=config)

设置最小的GPU使用量

config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config)